
HOMEWORK 5

Due date: Monday of Week 6

Exercises: 1, 2, 3, 6, 11, 14, pages 288-290
Exercises: 1, 2, 4, 5, 6, 7, 10, 12, pages 298-299.

Assume that F = R or C.

Problem 1. In Theorem 7, page 293 of the textbook, we only defined adjoint for linear operators
T ∈ End(V ). Try to generalize this concept to general linear maps, namely, try to define the
adjoint T ∗ for T ∈ Hom(V,W ), where V,W are two (possibly different) inner product spaces over
F . Moreover, show that the adjoint you defined above indeed exists.

Problem 2. Let A ∈ Matm×n(F ). We consider the linear operator TA : Fn → Fm by TA(α) := Aα.
Here Fn and Fm are viewed as inner product space with respect to the standard inner product defined
on them. Show that the adjoint of TA is given by TA∗ , where A∗ = At and the adjoint of TA is defined
in the last problem.

We consider the column vector space Rn over R. Let ( | ) be the standard inner product on Rn.
Recall that (x|y) = ytx, where yt denotes the transpose of y. Given a matrix A ∈ Matm×n(R), we
define the linear operator TA : Rn → Rm by TA(x) = Ax. Denote Ker(A) = {x ∈ Rn : Ax = 0} =
Ker(TA). Let Row(A) denote the space spanned by rows of A.

Problem 3. Given A ∈ Matm×n(R). Show that

(1) Ker(A) = Ker(AtA);
(2) rank(A) = rank(AtA);
(3) Row(A) = Row(AtA).

Let F be R or C. Let V be a finite dimensional inner product space over F and let W be a
subspace of V . We then have the orthogonal decomposition V = W W⊥. Let ProjW : V → V
denotes the projection from V to W corresponding to this decomposition, namely, ProjW (α, β) = α
for α ∈W,β ∈W⊥.

Problem 4. Let V = Rn endowed with the standard inner product. Let W ⊂ V be a subspace of V
of dimension m. Let B = {α1, . . . , αm} be a basis of W and consider the matrix

MB = [α1, . . . , αm] ∈ Matn×m(R).

Here each αi is a column vector.

(1) Show that M t
BMB ∈ Matm×m(R) is invertible.

(2) Consider the matrix PB = MB(M t
BMB)−1M t

B ∈ Matn×n(R). Show that PB is independent
on the choice of B and thus it only depends on the space W .

(3) For any α ∈ Rn, show that PBα ∈W . (The notation PBα denotes the matrix product of PB
with α).

(4) Show that the map E : Rn → Rn defined by E(α) = PBα is the same as the projection map
ProjW . (Hint: one way to do this is by choosing a good basis of W using the last part. Then
compute the matrix PB.)

Given a matrix A ∈ Matm×n(R) and β ∈ Rm, we consider the linear system

(0.1) Ax = β.

The above equation does not always have a solution. If the above equation has no solution, we can
consider the following approximating solution, which is called least square solution. A vector x̂ ∈ Rn

is called a least square solution of (0.1) if

||β −Ax̂|| ≤ ||β −Ax||,∀x ∈ Rn.
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It is clear that if x ∈ Rn is a solution of (0.1), then it is also a least square solution.

Problem 5. Given A ∈ Matm×n(R) and β ∈ Rm. Consider

Im(A) = {y ∈ Rm : y = Ax for some x ∈ Rn} ⊂ Rm,

and
Ker(At) =

{
y ∈ Rm : Aty = 0

}
⊂ Rm.

(1) Show that Im(A)⊥ = Ker(At). Here ⊥ is relative to the standard inner product on Rm.
(2) Show that x̂ ∈ Rn is a least square solution of (0.1) if and only if β − Ax̂ ∈ Im(A)⊥ if and

only if AtAx̂ = Atβ.
(3) Show that (0.1) always has a least square solution.
(4) Give a condition such that (0.1) has a unique least square solution.

Problem 6. Let A =

−1 3 2
2 1 3
0 1 1

 ∈ Mat3×3(R) and β =

7
0
7

. Find a least square solution of the

equation
Ax = β.

Problems 3-6 were stated for the field R. Try to consider the analogues for inner product spaces
over C. For example, in Problem 3, if we replace R by C and replace At by A∗, then show the same
assertions hold. In Problem 4, what is the matrix PB if the field is C? Formulate and solve the least
square solution problem over C as in Problem 5.


