HOMEWORK 5

Due date: Monday of Week 6

Exercises: 1,

1, 2, 3, 6, 11, 14, pages 288-290
Exercises: 1, 2,4, 5,6

, 7, 10, 12, pages 298-299.

b

Assume that FF =R or C.

Problem 1. In Theorem 7, page 293 of the textbook, we only defined adjoint for linear operators
T € End(V). Try to generalize this concept to general linear maps, namely, try to define the
adjoint T* for T € Hom(V, W), where V,W are two (possibly different) inner product spaces over
F. Moreover, show that the adjoint you defined above indeed exists.

Problem 2. Let A € Mat,, xn(F). We consider the linear operator Ta : F™ — F™ by Ta(a) := Ac.
Here F™ and F™ are viewed as inner product space with respect to the standard inner product defined
on them. Show that the adjoint of T4 is given by Tx-, where A* = At and the adjoint of T4 is defined
in the last problem.

We consider the column vector space R™ over R. Let ( | ) be the standard inner product on R™.
Recall that (z]y) = y'z, where y* denotes the transpose of y. Given a matrix A € Mat,x,(R), we
define the linear operator Ty : R™ — R™ by Ta(z) = Az. Denote Ker(4) = {x e R* : Ax =0} =
Ker(Ty4). Let Row(A) denote the space spanned by rows of A.

Problem 3. Given A € Mat,,xn(R). Show that
(1) Ker(A) = Ker(A'A);
(2) rank(A) = rank(AA);
(3) Row(A) = Row(AtA).
Let F be R or C. Let V be a finite dimensional inner product space over F' and let W be a
subspace of V. We then have the orthogonal decomposition V.= W O W+. Let Projyw : V — V

denotes the projection from V to W corresponding to this decomposition, namely, Projw (o, 8) = «
forae W,8 € Wt.

Problem 4. Let V = R" endowed with the standard inner product. Let W C V' be a subspace of V
of dimension m. Let B = {aa,...,amn} be a basis of W and consider the matrix
Mp = [a1, ..., ] € Mat,xm(R).
Here each «; is a column vector.
(1) Show that MEMp € Mat,y, xm(R) is invertible.
(2) Consider the matriz Pg = Mg(MEMp) ' M}, € Mat,,«,(R). Show that Pg is independent
on the choice of B and thus it only depends on the space W .
(3) For any a € R™, show that Pga € W. (The notation Pga denotes the matriz product of Pg
with «).
(4) Show that the map E : R™ — R™ defined by E(a) = Pga is the same as the projection map
Projw. (Hint: one way to do this is by choosing a good basis of W using the last part. Then
compute the matriz Pg.)

Given a matrix A € Mat,,«x,(R) and g € R™, we consider the linear system
(0.1) Az = .
The above equation does not always have a solution. If the above equation has no solution, we can

consider the following approximating solution, which is called least square solution. A vector & € R™
is called a least square solution of (0.1) if

18— AZ|| < [|8 — Az||, Vo € R™.
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It is clear that if x € R™ is a solution of (0.1), then it is also a least square solution.

Problem 5. Given A € Mat,,,xn(R) and 5 € R™. Consider
Im(A) = {y € R™ : y = Az for some z € R"} C R™,
and
Ker(A") = {y e R™: A'y =0} C R™.
(1) Show that Im(A)* = Ker(A*). Here L is relative to the standard inner product on R™.
(2) Show that & € R™ is a least square solution of (0.1) if and only if B — A% € Im(A)* if and
only if A'A% = Alp.
(3) Show that (0.1) always has a least square solution.
(4) Give a condition such that (0.1) has a unique least square solution.

-1 3 2 7
Problem 6. Let A= | 2 1 3| € Matz«3(R) and 8= |0|. Find a least square solution of the
0 1 1 7
equation
Ax = 0.

Problems 3-6 were stated for the field R. Try to consider the analogues for inner product spaces
over C. For example, in Problem 3, if we replace R by C and replace A* by A*, then show the same
assertions hold. In Problem 4, what is the matrix Pg if the field is C? Formulate and solve the least
square solution problem over C as in Problem 5.



