HOMEWORK 5

Due date: Monday of Week 6

Exercises: 1, 2, 3, 6, 11, 14, pages 288-290 Exercises: 1, 2, 4, 5, 6, 7, 10, 12, pages 298-299.

Assume that $F = \mathbb{R}$ or \mathbb{C} .

Problem 1. In Theorem 7, page 293 of the textbook, we only defined adjoint for linear operators $T \in \text{End}(V)$. Try to generalize this concept to general linear maps, namely, try to define the adjoint T^* for $T \in \text{Hom}(V, W)$, where V, W are two (possibly different) inner product spaces over F. Moreover, show that the adjoint you defined above indeed exists.

Problem 2. Let $A \in \operatorname{Mat}_{m \times n}(F)$. We consider the linear operator $T_A : F^n \to F^m$ by $T_A(\alpha) := A\alpha$. Here F^n and F^m are viewed as inner product space with respect to the standard inner product defined on them. Show that the adjoint of T_A is given by T_{A^*} , where $A^* = \overline{A^t}$ and the adjoint of T_A is defined in the last problem.

We consider the column vector space \mathbb{R}^n over \mathbb{R} . Let (|) be the standard inner product on \mathbb{R}^n . Recall that $(x|y) = y^t x$, where y^t denotes the transpose of y. Given a matrix $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$, we define the linear operator $T_A : \mathbb{R}^n \to \mathbb{R}^m$ by $T_A(x) = Ax$. Denote $\operatorname{Ker}(A) = \{x \in \mathbb{R}^n : Ax = 0\} = \operatorname{Ker}(T_A)$. Let $\operatorname{Row}(A)$ denote the space spanned by rows of A.

Problem 3. Given $A \in Mat_{m \times n}(\mathbb{R})$. Show that

- (1) $\operatorname{Ker}(A) = \operatorname{Ker}(A^{t}A);$
- (2) $\operatorname{rank}(A) = \operatorname{rank}(A^t A);$
- (3) $\operatorname{Row}(A) = \operatorname{Row}(A^t A).$

Let F be \mathbb{R} or \mathbb{C} . Let V be a finite dimensional inner product space over F and let W be a subspace of V. We then have the orthogonal decomposition $V = W \oplus W^{\perp}$. Let $Proj_W : V \to V$ denotes the projection from V to W corresponding to this decomposition, namely, $Proj_W(\alpha, \beta) = \alpha$ for $\alpha \in W, \beta \in W^{\perp}$.

Problem 4. Let $V = \mathbb{R}^n$ endowed with the standard inner product. Let $W \subset V$ be a subspace of V of dimension m. Let $\mathcal{B} = \{\alpha_1, \ldots, \alpha_m\}$ be a basis of W and consider the matrix

$$M_{\mathcal{B}} = [\alpha_1, \dots, \alpha_m] \in \operatorname{Mat}_{n \times m}(\mathbb{R}).$$

Here each α_i is a column vector.

- (1) Show that $M^t_{\mathcal{B}}M_{\mathcal{B}} \in \operatorname{Mat}_{m \times m}(\mathbb{R})$ is invertible.
- (2) Consider the matrix $P_{\mathcal{B}} = M_{\mathcal{B}}(M_{\mathcal{B}}^t M_{\mathcal{B}})^{-1} M_{\mathcal{B}}^t \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Show that $P_{\mathcal{B}}$ is independent on the choice of \mathcal{B} and thus it only depends on the space W.
- (3) For any $\alpha \in \mathbb{R}^n$, show that $P_{\mathcal{B}}\alpha \in W$. (The notation $P_{\mathcal{B}}\alpha$ denotes the matrix product of $P_{\mathcal{B}}$ with α).
- (4) Show that the map $E : \mathbb{R}^n \to \mathbb{R}^n$ defined by $E(\alpha) = P_{\mathcal{B}}\alpha$ is the same as the projection map $Proj_W$. (Hint: one way to do this is by choosing a good basis of W using the last part. Then compute the matrix $P_{\mathcal{B}}$.)

Given a matrix $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $\beta \in \mathbb{R}^m$, we consider the linear system

$$Ax = \beta.$$

The above equation does not always have a solution. If the above equation has no solution, we can consider the following approximating solution, which is called *least square solution*. A vector $\hat{x} \in \mathbb{R}^n$ is called a least square solution of (0.1) if

$$||\beta - A\hat{x}|| \le ||\beta - Ax||, \forall x \in \mathbb{R}^n.$$

HOMEWORK 5

It is clear that if $x \in \mathbb{R}^n$ is a solution of (0.1), then it is also a least square solution.

Problem 5. Given $A \in Mat_{m \times n}(\mathbb{R})$ and $\beta \in \mathbb{R}^m$. Consider

 $\operatorname{Im}(A) = \{ y \in \mathbb{R}^m : y = Ax \text{ for some } x \in \mathbb{R}^n \} \subset \mathbb{R}^m,$

and

$$\operatorname{Ker}(A^t) = \left\{ y \in \mathbb{R}^m : A^t y = 0 \right\} \subset \mathbb{R}^m.$$

- (1) Show that $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^t)$. Here \perp is relative to the standard inner product on \mathbb{R}^m .
- (2) Show that $\hat{x} \in \mathbb{R}^n$ is a least square solution of (0.1) if and only if $\beta A\hat{x} \in \text{Im}(A)^{\perp}$ if and only if $A^t A \hat{x} = A^t \beta$.
- (3) Show that (0.1) always has a least square solution.
- (4) Give a condition such that (0.1) has a unique least square solution.

Problem 6. Let $A = \begin{bmatrix} -1 & 3 & 2\\ 2 & 1 & 3\\ 0 & 1 & 1 \end{bmatrix} \in \operatorname{Mat}_{3\times 3}(\mathbb{R}) \text{ and } \beta = \begin{bmatrix} 7\\0\\7 \end{bmatrix}$. Find a least square solution of the equation

$$Ax = \beta$$

Problems 3-6 were stated for the field \mathbb{R} . Try to consider the analogues for inner product spaces over \mathbb{C} . For example, in Problem 3, if we replace \mathbb{R} by \mathbb{C} and replace A^t by A^* , then show the same assertions hold. In Problem 4, what is the matrix $P_{\mathcal{B}}$ if the field is \mathbb{C} ? Formulate and solve the least square solution problem over \mathbb{C} as in Problem 5.